
Tree Rotation and Red-Black Trees
Lecture 18 (Data Structures 4)

1

CS61B, Spring 2024 @ UC Berkeley
Slides credit: Josh Hug

B-Trees Are Ugly to Implement
Tree Rotation

• Definition
• Tree Balancing

Left Leaning Red-Black Trees (LLRBs)
• The 2-3 Tree Isometry
• LLRB Properties
• Maintaining Isometry with

Rotations
• Optional Exercise
• Runtime and Implementation

Search Tree Summary

B-Trees Are Ugly
to Implement
Lecture 18, CS61B, Spring 2024

The Bad News

B-Trees for small L, e.g. 2-3 trees and 2-3-4 trees, are a real pain to implement, and
suffer from performance problems. Issues include:
● Maintaining different node types.
● Interconversion of nodes between 2-nodes and 3-nodes.
● Walking up the tree to split nodes.

“Beautiful algorithms are, unfortunately, not always the most useful.” - Knuth

public void put(Key key, Value val) {
 Node x = root;
 while (x.getTheCorrectChildKey(key) != null) {
 x = x.getTheCorrectChildKey();
 if (x.is4Node()) { x.split(); }
 }
 if (x.is2Node()) { x.make3Node(key, val); }
 if (x.is3Node()) { x.make4Node(key, val); }
}

fantasy 2-3 code via Kevin Wayne

http://www.cs.princeton.edu/courses/archive/fall18/cos226/lectures/33BalancedSearchTrees.pdf

B-Trees Are Ugly to Implement
Tree Rotation

• Definition
• Tree Balancing

Left Leaning Red-Black Trees (LLRBs)
• The 2-3 Tree Isometry
• LLRB Properties
• Maintaining Isometry with

Rotations
• Optional Exercise
• Runtime and Implementation

Search Tree Summary

Definition of Tree
Rotation
Lecture 18, CS61B, Spring 2024

BSTs

Suppose we have a BST with the numbers 1, 2, 3. Five possible BSTs.
● The specific BST you get is based on the insertion order.
● More generally, for N items, there are Catalan(N) different BSTs.

1

2

3

1

3

2
3

2

1

3

1

2

3

2

1

Given any BST, it is possible to move to a different configuration using “rotation”.
● In general, can move from any configuration to any other in 2n - 6 rotations

(see Rotation Distance, Triangulations, and Hyperbolic Geometry or Amy Liu).

https://en.wikipedia.org/wiki/Catalan_number
https://www.cs.cmu.edu/~sleator/papers/rotation-distance.pdf
https://medium.com/@liuamyj/its-triangles-all-the-way-down-part-1-17f932f4c438

Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Preserves search tree property. No change to semantics of tree.

G

C P

k rA

B j l

I’m going left!!

Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Preserves search tree property. No change to semantics of tree.

G

C P

k rA

B j l

I’m going left!!

I’ll be G’s new boss.

Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Preserves search tree property. No change to semantics of tree.

G

C

P

k r

A

B

j l

I went left of P.
I am G’s new boss.

Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Preserves search tree property. No change to semantics of tree.

G

C

P

k r

A

B

j l

I am G’s new boss.

I don’t make sense.

I went left of P.

Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Preserves search tree property. No change to semantics of tree.

G

C

P

k r

A

B

j l

I am G’s new boss.

I don’t make sense.

I went left of P.

Where should go?k

j l

Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Preserves search tree property. No change to semantics of tree.

G

C

P

k

r

A

B
j l

I am G’s new boss.
I went left of P.

Where should go: To the right of G.k

j l

I got transferred
from P to G.

Tree Rotation Definition (All in One Slide)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Preserves search tree property. No change to semantics of tree.

G

C P

k rA

B j l

I’m going left!!
I went left.

I’ll be G’s new boss.

I am G’s new boss.

G

C

P

k rA

B j l

For this example rotateLeft(G) increased height of tree!

Tree Rotation Definition (Alternate Interpretation)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Can think of as temporarily merging G and P, then sending G down and left.
● Preserves search tree property. No change to semantics of tree.

G

C P

k rA

B j l

C

k rA

B j l

G P

C k

r

A

B

j l

G

P

For this example rotateLeft(G) increased height of tree!

Your Turn

rotateRight(P): Let x be the left child of P. Make P the new right child of x.
● Can think of as temporarily merging G and P, then sending P down and right.

C k r

A

B

j l

G

P

rotateRight(P): Let x be the left child of P. Make P the new right child of x.
● Can think of as temporarily merging G and P, then sending P down and right.
● Note: k was G’s right child. Now it is P’s left child.

Your Turn

G

C

P

k r

A

B

j l

For this example rotateRight(P) decreased height of tree!

C k r

A

B

j l

G

P

C k r

A

B

j l

G P

B-Trees Are Ugly to Implement
Tree Rotation

• Definition
• Tree Balancing

Left Leaning Red-Black Trees (LLRBs)
• The 2-3 Tree Isometry
• LLRB Properties
• Maintaining Isometry with

Rotations
• Optional Exercise
• Runtime and Implementation

Search Tree Summary

Tree Balancing
Lecture 18, CS61B, Spring 2024

BSTs

Give a sequence of rotation operations that balances the tree on the left.

1

3

2
3

2

1

BSTs

Give a sequence of rotation operations that balances the tree on the left.
● rotateRight(3)
● rotateLeft(1)

1

3

2
3

2

1

1

2

3

There are other correct answers as well!

Rotation for Balance

Rotation:
● Can shorten (or lengthen) a tree.
● Preserves search tree property.

D

B

rotateRight(D)

rotateLeft(B)

>D

> B and < D< B

D

B

>D

> B and < D< B

Rotation for Balance

Rotation:
● Can shorten (or lengthen) a tree.
● Preserves search tree property.

D

B

rotateRight(D)

rotateLeft(B)

>D

> B and < D< B

D

B

>D

> B and < D< B

Can use rotation to balance a BST.
● Rotation allows balancing of a BST in O(N) moves.

Demo: Balancing with Tree Rotation

4

1

6

13

9

17

8

Demo: Balancing with Tree Rotation

4

1

6

13

9

17

8

rotateLeft(9)

Demo: Balancing with Tree Rotation

4

1

6

17

13

9

8

Demo: Balancing with Tree Rotation

4

1

6

17

13

9

8

rotateLeft(6)

Demo: Balancing with Tree Rotation

1

6

8

17

13

9

4

Demo: Balancing with Tree Rotation

1

6

8

17

13

9

4

rotateLeft(1)

Demo: Balancing with Tree Rotation

4

6

8

17

13

9

1

Demo: Balancing with Tree Rotation

4

6

8

17

13

9

1

rotateRight(6)

Demo: Balancing with Tree Rotation

1

4

8

17

13

96

Demo: Balancing with Tree Rotation

1

4

8

17

13

96

4

1

6

13

9

17

8
rotateLeft(9)
rotateLeft(6)
rotateLeft(1)
rotateRight(6)

Some Rotations are Undefined

4

1 rotateRight(1)
???

● Rotating a node right is undefined if that node has no left child.
○ We would need to promote that node's left child, but it doesn't exist.

● Rotating a node left is undefined if that node has no right child.
● We won't need to perform any undefined rotations in this lecture, so don't

worry about them.

Rotation: An Alternate Approach to Balance

Rotation:
● Can shorten (or lengthen) a tree.
● Preserves search tree property.

D

B

rotateRight(D)

rotateLeft(B)

>D

> B and < D< B

D

B

>D

> B and < D< B

Paying O(n) to occasionally balance a tree is not ideal. In this lecture, we’ll
see a better way to achieve balance through rotation. But first...

B-Trees Are Ugly to Implement
Tree Rotation

• Definition
• Tree Balancing

Left Leaning Red-Black Trees (LLRBs)
• The 2-3 Tree Isometry
• LLRB Properties
• Maintaining Isometry with

Rotations
• Optional Exercise
• Runtime and Implementation

Search Tree Summary

The 2-3 Tree
Isometry
Lecture 18, CS61B, Spring 2024

Search Trees

There are many types of search trees:
● Binary search trees: Can balance using rotation, but we have no algorithm for

doing so (yet).
● 2-3 trees: Balanced by construction, i.e. no rotations required.

Let’s try something clever, but strange.

Our goal: Build a BST that is structurally identical to a 2-3 tree.
● Since 2-3 trees are balanced, so will our special BSTs.

Representing a 2-3 Tree as a BST

A 2-3 tree with only 2-nodes is trivial.
● BST is exactly the same!

What do we do about 3-nodes?

e

b g

o

n p

m

d f

b g

o

n p

m

e

e

b g

o

n p

m

????

Representing a 2-3 Tree as a BST: Dealing with 3-Nodes

Possibility 1: Create dummy “glue” nodes.

d f

b g

o

n p

m

e

o

n p

m

b ge

d f

d f
d f

Result is inelegant. Wasted link. Code will be ugly.

Representing a 2-3 Tree as a BST: Dealing with 3-Nodes

Possibility 2: Create “glue” links with the smaller item off to the left.

d f

b g

o

n p

m

e

o

n p

m

d

f

d f

Idea is commonly used in practice (e.g. java.util.TreeSet).

e

g

b

d

f

For convenience, we’ll mark glue links as “red”.

Left-Leaning Red Black Binary Search Tree (LLRB)

A BST with left glue links that represents a 2-3 tree is often called a “Left Leaning
Red Black Binary Search Tree” or LLRB.
● LLRBs are normal BSTs!
● There is a 1-1 correspondence between an LLRB and an equivalent 2-3 tree.
● The red is just a convenient fiction. Red links don’t “do” anything special.

B-Trees Are Ugly to Implement
Tree Rotation

• Definition
• Tree Balancing

Left Leaning Red-Black Trees (LLRBs)
• The 2-3 Tree Isometry
• LLRB Properties
• Maintaining Isometry with

Rotations
• Optional Exercise
• Runtime and Implementation

Search Tree Summary

LLRB Properties
Lecture 18, CS61B, Spring 2024

Left-Leaning Red Black Binary Search Tree (LLRB)

Draw the LLRB corresponding to the 2-3 tree shown below.

x ya s v

u w

Left-Leaning Red Black Binary Search Tree (LLRB)

Draw the LLRB corresponding to the 2-3 tree shown below.

x ya s v

u w

s v

u

w

x

y

a

Left-Leaning Red Black Binary Search Tree (LLRB)

Draw the LLRB corresponding to the 2-3 tree shown below.

s v

u

w

x

y

a

Searching an LLRB tree for a key is easy.
● Treat it exactly like any BST.

x ya s v

u w

LLRB Problem #1: yellkey.com/view

How many of these are valid LLRBs, i.e. have a 1-1 correspondence with
a valid 2-3 tree?

G

B X

A C

G

B X

A C

G

B X

A C

G

C X

A

B

LLRB Problem #1: yellkey.com/view

How many of these are valid LLRBs, i.e. have a 1-1 correspondence with
a valid 2-3 tree?

G

C X

A

B

G

B X

A C

G

B X

A C

G

B X

A C

G

A B C X

G

A B X

C

G

B X

A C

B G

XA C

Equivalent 2-3

Invalid, has 4 node. Invalid, not balanced. Invalid, not balanced.

LLRB Problem #2: yellkey.com/chair

How tall is the corresponding LLRB for the 2-3 tree below? (3 - nodes in pink)

D E P

B G J N

Q R V WA C F H I K M O

S U

T

L

LLRB Problem #2: yellkey.com/chair

How tall is the corresponding LLRB for the 2-3 tree below? (3 - nodes in pink)
● Each 3-node becomes two nodes in the LLRB.
● Total height is 3 (black) + 2 (red) = 5.
● More generally, an LLRB has no more than ~2x the height of its 2-3 tree.

L

P

U

S

R

Q

D E P

B G J N

Q R V WA C F H I K M O

S U

T

L

Dark line shows longest path (3 links).

3 black links
2 red links

LLRB Balance

Because 2-3 trees have logarithmic height, and the corresponding LLRB has height
that is never more than ~2 times the 2-3 tree height, LLRBs also have logarithmic
height!

L

P

U

S

R

Q

D E P

B G J N

Q R V WA C F H I K M O

S U

T

L

Dark line shows longest path (3 links).

3 black links
2 red links

A somewhat more formal look at
heights of LLRBs follows in the hidden
slides after this one.

● This is covered in the web videos,
but honestly, I don’t think the
argument is necessary.

● These slides include two
invariants you might find
interesting.

Extra: LLRB
Invariants
Lecture 18, CS61B, Spring 2024

LLRB Height

D E P

B G J N

Q R V WA C F H I K M O

S U

T

L

Suppose we have a 2-3 tree of height H.
● What is the maximum height of the corresponding LLRB?

LLRB Height

D E P

B G J N

Q R V WA C F H I K M O

S U

T

L

Suppose we have a 2-3 tree of height H.
● What is the maximum height of the corresponding LLRB?

○ Total height is H (black) + H + 1 (red) = 2H + 1.

Worst case would be if these
were both 3 nodes.

Left-Leaning Red Black Binary Search Tree (LLRB) Properties

Some handy LLRB properties:
● No node has two red links [otherwise it’d be analogous to a 4 node, which are

disallowed in 2-3 trees].
● Every path from root to null has same number of black links [because 2-3

trees have the same number of links to every leaf]. LLRBs are therefore
balanced.

Extra Slide: Root-to-Leaf vs. Root-to-Null

A version of this lecture from many years ago had a subtle error in its definition of
“perfect black balance”. Specifically, it stated:
● The number of black links to any leaf must be the same.

In fact, the correct invariant is:
● The number of black links to any null link must be the same.

An example of a red-black tree which satisfies the erroneous invariant, but has no
corresponding 2-3 tree:

G

B X

A Invalid LLRB!

B G

XA
2-3 tree missing child.

Left-Leaning Red Black Binary Search Tree (LLRB) Properties

Some handy LLRB properties:
● No node has two red links [otherwise it’d be analogous to a 4 node, which are

disallowed in 2-3 trees].
● Every path from root to null has same number of black links [because 2-3

trees have the same number of links to every leaf]. LLRBs are therefore
balanced.

G

C X

A

B

G

B X

A C

G

B X

A C

G

B X

A C

Invalid, B has two red links.
Invalid, not
black balanced.

Invalid, not
black balanced. Valid

B-Trees Are Ugly to Implement
Tree Rotation

• Definition
• Tree Balancing

Left Leaning Red-Black Trees (LLRBs)
• The 2-3 Tree Isometry
• LLRB Properties
• Maintaining Isometry with

Rotations
• Optional Exercise
• Runtime and Implementation

Search Tree Summary

Maintaining
Isometry with
Rotations
Lecture 18, CS61B, Spring 2024

LLRB Construction

One last important question: Where do LLRBs come from?
● Would not make sense to build a 2-3 tree, then convert. Even more complex.
● Instead, it turns out we implement an LLRB insert as follows:

○ Insert as usual into a BST.
○ Use zero or more rotations to maintain the 1-1 mapping.

The 1-1 Mapping

There exists a 1-1 mapping between:
● 2-3 Tree
● LLRB

Implementation of an LLRB is based on maintaining this 1-1 correspondence.
● When performing LLRB operations, pretend like you’re a 2-3 tree.
● Preservation of the correspondence will involve tree rotations.

Design Task #1: Insertion Color

Should we use a red or black link when inserting?

S
S

E

S

E

S E S

LLRB World

World 2-3

add(E)

add(E)

add(E)

Design Task #1: Insertion Color

Should we use a red or black link when inserting?
● Use red! In 2-3 trees new values are ALWAYS added to a leaf node (at first).

S
S

E

S

E

S E S

LLRB World

add(E)

add(E)

add(E)

World 2-3

Suppose we have leaf E, and insert S with a red link. What is the problem below,
and what do we do about it?

Design Task #2: Insertion on the Right

B

A E

B

A E S

B

A E

B

A E

S

LLRB World

add(S)

add(S)

World 2-3

Suppose we have leaf E, and insert S with a red link. What is the problem below,
and what do we do about it: Right links aren’t allowed. What rotation fixes this?

Design Task #2: Insertion on the Right

B

A E

B

A E S

B

A E

B

A E

S

LLRB World

add(S)

add(S)

World 2-3

B

A S

E
Hint: This is the correct
representation of the
2-3 tree.

What rotation operation
gives us this tree?

Design Task #2: Insertion on the Right

Suppose we have leaf E, and insert S with a red link. What is the problem below,
and what do we do about it: Right links aren’t allowed, so rotateLeft(E).

B

A E

B

A E S

B

A E

B

A E

S

B

A S

E

LLRB World

add(S) rotateLeft(E)

add(S)

World 2-3

New Rule: Representation of Temporary 4-Nodes

We will represent temporary 4-nodes as BST nodes with two red links.
● This state is only temporary (more soon), so temporary violation of “left

leaning” is OK.

B

A E S

B

A E S Z

LLRB World

B

A S

E

B

A S

E Z

add(Z)

add(Z)

Represents
temporary 4 nodes.
Temporarily violates
“no red right links”.

Temporarily violates
“no 4 nodes”.

World 2-3

Design Task #3: Double Insertion on the Left

Suppose we have the LLRB below and insert E. We end up with the wrong
representation for our temporary 4 node. What should we do so that the temporary
4 node has 2 red children (one left, one right) as expected?

LLRB World

World 2-3

B

A S Z

B

A E S Z

B

A Z

S

B

A Z

S

E

add(E)

add(E)

Design Task #3: Double Insertion on the Left

Suppose we have the LLRB below and insert E. We end up with the wrong
representation for our temporary 4 node. What should we do so that the temporary
4 node has 2 red children (one left, one right) as expected?

LLRB World

World 2-3

B

A S Z

B

A E S Z

B

A Z

S

B

A Z

S

E

add(E)

add(E)

Hint: This is the correct
representation of the
2-3 tree.

What rotation operation
gives us this tree?

B

A S

E Z

Design Task #3: Double Insertion on the Left

Suppose we have the LLRB below and insert E. We end up with the wrong
representation for our temporary 4 node. What should we do?
● Rotate Z right.

LLRB World

World 2-3

B

A S Z

B

A E S Z

B

A Z

S

B

A Z

S

E

B

A S

E Z

rotateRight(Z)add(E)

add(E)

Design Task #4: Splitting Temporary 4-Nodes

Suppose we have the LLRB below which includes a temporary 4 node. What
should we do next?
● Try to figure this one out! It’s a particularly interesting puzzle.

LLRB World

World 2-3

G

A B C X

split(A/B/C) B G

XA C

G

B X

A C
Hint: Ask yourself “What Would
2-3 Tree Do?” WW23TD?

Design Task #4: Splitting Temporary 4-Nodes

Suppose we have the LLRB below which includes a temporary 4 node. What
should we do next?
● Try to figure this one out! It’s a particularly interesting puzzle.

LLRB World

World 2-3

G

A B C X

split(A/B/C) B G

XA C

G

B X

A C

G

B X

A C
Hint 2: This is the correct
representation of the 2-3 tree.

How do we get this tree?

Hint 3: We don't need rotation.

Design Task #4: Splitting Temporary 4-Nodes

Suppose we have the LLRB below which includes a temporary 4 node. What
should we do next?
● Flip the colors of all edges touching B.

○ Note: This doesn’t change the BST structure/shape.

LLRB World

World 2-3

G

A B C X

split(A/B/C) B G

XA C

G

B X

A C

flip(B)
G

B X

A C

BST, the magic was inside
of you all along.

… and That’s It!

Congratulations, you just invented the red-black BST.
● When inserting: Use a red link.
● If there is a right leaning “3-node”, we have a Left Leaning Violation.

○ Rotate left the appropriate node to fix.
● If there are two consecutive left links, we have an Incorrect 4 Node Violation.

○ Rotate right the appropriate node to fix.
● If there are any nodes with two red children, we have a Temporary 4 Node.

○ Color flip the node to emulate the split operation.

One last detail: Cascading operations.
● It is possible that a rotation or flip operation will cause an additional violation

that needs fixing.

Cascading Balance Example

Inserting Z gives us a temporary 4 node.
● Color flip yields an invalid tree. Why? What’s next?

B

A E S

B

A E S Z

B

A S

E

LLRB World

World 2-3

B

A S

E Z

B

A S

E Z

B S

A E Z

add(Z) flip(S)

add(Z) split(E/S/Z)

Cascading Balance Example

Inserting Z gives us a temporary 4 node.
● Color flip yields an invalid tree. Why? What’s next?
● We have a right leaning 3-node (B-S). We can fix with rotateLeft(b).

LLRB World

World 2-3

B

A S

E Z

B S

A E Z

B

A

S

E

Z
rotateLeft(B)

B-Trees Are Ugly to Implement
Tree Rotation

• Definition
• Tree Balancing

Left Leaning Red-Black Trees (LLRBs)
• The 2-3 Tree Isometry
• LLRB Properties
• Maintaining Isometry with

Rotations
• Optional Exercise
• Runtime and Implementation

Search Tree Summary

Optional Exercise
Lecture 18, CS61B, Spring 2024

Insertion of 7 through 1

To get an intuitive understanding of why all this works, try inserting the 7, 6, 5, 4, 3,
2, 1, into an initially empty LLRB.
● You should end up with a perfectly balanced BST!

To check your work, see this demo.
● Or see this video walkthrough of solution.

2

1 3

6

5 7

4

https://docs.google.com/presentation/d/1jgOgvx8tyu_LQ5Y21k4wYLffwp84putW8iD7_EerQmI/edit?usp=sharing
https://www.youtube.com/watch?v=JwZU-uaNEMg&list=PL8FaHk7qbOD6aKgTz2W-foDiTeBEaBoS3&index=7

B-Trees Are Ugly to Implement
Tree Rotation

• Definition
• Tree Balancing

Left Leaning Red-Black Trees (LLRBs)
• The 2-3 Tree Isometry
• LLRB Properties
• Maintaining Isometry with

Rotations
• Optional Exercise
• Runtime and Implementation

Search Tree Summary

Runtime and
Implementation
Lecture 18, CS61B, Spring 2024

LLRB Runtime

The runtime analysis for LLRBs is simple if you trust the 2-3 tree runtime.
● LLRB tree has height O(log N).
● Contains is trivially O(log N).
● Insert is O(log N).

○ O(log N) to add the new node.
○ O(log N) rotation and color flip operations per insert.

We will not discuss LLRB delete.
● Not too terrible really, but it’s just not interesting enough to cover. See optional

textbook if you’re curious (though they gloss over it, too).

B-Trees Are Ugly to Implement
Tree Rotation

• Definition
• Tree Balancing

Left Leaning Red-Black Trees (LLRBs)
• The 2-3 Tree Isometry
• LLRB Properties
• Maintaining Isometry with

Rotations
• Optional Exercise
• Runtime and Implementation

Search Tree Summary

Search Tree
Summary
Lecture 18, CS61B, Spring 2024

Search Trees

In the last 3 lectures, we talked about using search trees to implement sets/maps.
● Binary search trees are simple, but they are subject to imbalance.
● 2-3 Trees (B Trees) are balanced, but painful to implement and relatively

slow.
● LLRBs insertion is simple to implement (but delete is hard).

○ Works by maintaining mathematical bijection with a 2-3 trees.
● Java’s TreeMap is a red-black tree (not left leaning).

○ Maintains correspondence with 2-3-4 tree (is not a 1-1 correspondence).
○ Allows glue links on either side (see Red-Black Tree).
○ More complex implementation, but significantly (?) faster.

https://github.com/AdoptOpenJDK/openjdk-jdk11/blob/999dbd4192d0f819cb5224f26e9e7fa75ca6f289/src/java.base/share/classes/java/util/TreeMap.java
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree

… and Beyond

There are many other types of search trees out there.
● Other self balancing trees: AVL trees, splay trees, treaps, etc. There are at

least hundreds of different such trees.

And there are other efficient ways to implement sets and maps entirely.
● Other linked structures: Skip lists are linked lists with express lanes.
● Other ideas entirely: Hashing is the most common alternative. We’ll discuss

this very important idea in our next lecture.

