" Celestine Omin

; 2- Follow
cyberomin

| was just asked to balance a Binary Search
Tree by JFK's airport immigration. Welcome to
America.

5772 71500 MEBOEELRPEF

8:26 AM - 26 Feb 2017 from Manhattan, NY

Lecture 18 (Data Structures 4)

Tree Rotation and Red-Black Trees

CS61B, Spring 2024 @ UC Berkeley
Slides credit: Josh Hug

B-Trees Are Ugly to Implement

B-Trees Are Ugly
to Implement

Lecture 18, CS61B, Spring 2024

The Bad News

B-Trees for small L, e.g. 2-3 trees and 2-3-4 trees, are a real pain to implement, and
suffer from performance problems. Issues include:

e Maintaining different node types.
e Interconversion of nodes between 2-nodes and 3-nodes.
e Walking up the tree to split nodes.

fantasy 2-3 code via Kevin Wayne

public void put(Key key, Value val) {

Node X = root;

while (x.getTheCorrectChildKey(key) != null) {
X = x.getTheCorrectChildKey();
if (x.is4Node()) { x.split(); }

}

if (x.is2Node()) { x.make3Node(key, val); }

if (x.is3Node()) { x.makedNode(key, val); }

}

“Beautiful algorithms are, unfortunately, not always the most useful.” - Knuth
oL

http://www.cs.princeton.edu/courses/archive/fall18/cos226/lectures/33BalancedSearchTrees.pdf

Tree Rotation
« Definition

Definition of Tree
Rotation

Lecture 18, CS61B, Spring 2024

BSTs

Suppose we have a BST with the numbers 1, 2, 3. Five possible BSTs.
e The specific BST you get is based on the insertion order.
e More generally, for N items, there are Catalan(N) different BSTs.

< < e e
2
2 3 /\\ 1 2
N\ / 1]]3 N\ /
3 2 2 1

Given any BST, it is possible to move to a different configuration using “rotation”.

e In general, can move from any configuration to any other in 2n - 6 rotations
(see Rotation Distance, Triangulations, and Hyperbolic Geometry or Amy Liu).
oL

https://en.wikipedia.org/wiki/Catalan_number
https://www.cs.cmu.edu/~sleator/papers/rotation-distance.pdf
https://medium.com/@liuamyj/its-triangles-all-the-way-down-part-1-17f932f4c438

Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
e Preserves search tree property. No change to semantics of tree.

I'm going left!!
— —

G

/\

P

C
e N
A Kk r
N

B

AN

{ S

Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
e Preserves search tree property. No change to semantics of tree.

I'm going left!!
— ——
G I'll be G’s new boss.
/\ V
P

C
e N
A Kk r
N

B

AN

{ S

Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
e Preserves search tree property. No change to semantics of tree.

| am G's new boss.
| went left of P. P —
/\
G k r

AN

j |

/
C

/

A

N
B

Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
e Preserves search tree property. No change to semantics of tree.

| am G's new boss.
| went left of P. P —
L | don't make sense. | N\
G —A |k r

AN

j |

/
C

/

A

N
B

Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
e Preserves search tree property. No change to semantics of tree.

| am G’s new boss.
| went left of P. P —
L | don't make sense. /\
G A | k r

AN

j |

/
C

-

A

N
B

Where should k go?

AN

J I

Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
e Preserves search tree property. No change to semantics of tree.

/

A

N
B

| am G’s new boss.

L

| went left of P. P
— \
G r
| got transferred
from P to G.

g\

k

AN

Where should

k go: To the right of G.

AN

J I

Tree Rotation Definition (All in One Slide)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
e Preserves search tree property. No change to semantics of tree.

| am G’s new boss.

N
I'm going left!! e P
] .
G I'll be G's new boss. G
/\ -
C P C
A Kk r A K r

B | | B | |

For this example rotateLeft(G) increased height of tree!

Tree Rotation Definition (Alternate Interpretation)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.

e Can think of as temporarily merging G and P, then sending G down and left.
e Preserves search tree property. No change to semantics of tree.

G GP P
i N e T~
A K r A K r C K
N N N N i N
B j | B j | A j |
e

For this example rotateLeft(G) increased height of tree!

Your Turn

rotateRight(P): Let x be the left child of P. Make P the new right child of x.
e Can think of as temporarily merging G and P, then sending P down and right.

P
e/\
/\
C Kk r
e O\
A j |
N
B

Your Turn

rotateRight(P): Let x be the left child of P. Make P the new right child of x.

e Can think of as temporarily merging G and P, then sending P down and right.
e Note: k was G’'s right child. Now it is P’s left child.

P GP G
A /\P
N N
C k r C k r C k r
e N i N e N
A j | A j | A j |
N N N
B B B

For this example rotateRight(P) decreased height of tree!

Tree Rotation

* Tree Balancing

Tree Balancing

Lecture 18, CS61B, Spring 2024

BSTs

Give a sequence of rotation operations that balances the tree on the left.

1
N\

3 N
oo

BSTs

Give a sequence of rotation operations that balances the tree on the left.
e rotateRight(3)
e rotatelLeft(1)

1
PN

3 : 2 SZN
£

There are other correct answers as well!
oL

Rotation for Balance

Rotation:

e Can shorten (or lengthen) a tree.
e Preserves search tree property.

<B

D

>Band <D

A

>D

rotateRight(D)

<

rotateLeft(B)

Band <D

>D

Rotation for Balance

Rotation:

e Can shorten (or lengthen) a tree.
e Preserves search tree property.

D

B

£ A

Band <D

A

>D

rotateRight(D)

<

>

rotateLeft(B)

Can use rotation to balance a BST.

°

Rotation allows balancing of a BST in O(N) moves.

Band <D

>D

Demo: Balancing with Tree Rotation

6
PN
1 8
NN
4 9
N
13
N

17

Demo: Balancing with Tree Rotation

6
/ \
1 8
N
4 rotateLeft(9)
13

N

17

Demo: Balancing with Tree Rotation

Demo: Balancing with Tree Rotation

RrotateLeft(G)

\ \
/\

17

Demo: Balancing with Tree Rotation

13

N

g =

17

Demo: Balancing with Tree Rotation

PN

6 13

rotateLeft(1)

N

17

Demo: Balancing with Tree Rotation

8
/\
6 13

4 9 17

Demo: Balancing with Tree Rotation

8
\
rotateRight(6) 13
/ \
4 9 17

/

1

Demo: Balancing with Tree Rotation

8

/\

4

Al

13

N

9

17

Demo: Balancing with Tree Rotation

6

/ \ rotatelLeft(9)
1 8 rotatelLeft(6) 8

rotateLeft(1)
\ \ rotateRight(6) /\

4 9 > 4 13
13 1 6 9 17
\
17

Some Rotations are Undefined

e Rotating a node right is undefined if that node has no left child.
o We would need to promote that node's left child, but it doesn't exist.
e Rotating a node left is undefined if that node has no right child.

e We won't need to perform any undefined rotations in this lecture, so don't
worry about them.

1 rotateRight(1)

N\ = 777

Rotation: An Alternate Approach to Balance

Rotation:

e Can shorten (or lengthen) a tree.
e Preserves search tree property.

B
D rotateRight(D) D
/ -
B
>D
< >D
rotateLeft(B)
Band<D Band <D

Paying O(n) to occasionally balance a tree is not ideal. In this lecture, we'll
see a better way to achieve balance through rotation. But first...

Left Leaning Red-Black Trees (LLRBS)
* The 2-3 Tree Isometry

The 2-3 Tree
Isometry

Lecture 18, CS61B, Spring 2024

Search Trees

There are many types of search trees:

e Binary search trees: Can balance using rotation, but we have no algorithm for
doing so (yet).

e 2-3trees: Balanced by construction, i.e. no rotations required.
Let's try something clever, but strange.

Our goal: Build a BST that is structurally identical to a 2-3 tree.
e Since 2-3 trees are balanced, so will our special BSTs.

Representing a 2-3 Tree as a BST

A 2-3 tree with only 2-nodes is trivial.

BST is exactly the same!

/\
e 0
b g n P

m
/\
e o)
b g n P
What do we do about 3-nodes?
m
/\
df o)
/\
e n p

??7?7

Representing a 2-3 Tree as a BST: Dealing with 3-Nodes

Possibility 1: Create dummy “glue” nodes.

m
1,’—-}‘\/\
|\ df “ (0] —_—
=~ --=> AN
b e g n p

Result is inelegant. Wasted link. Code will be ugly.

/ .
/7 \
s \
-— - 7
I/ \\ / \\
i d f \ _> I \

| \
*] \\ d f \|

-~ ——

Representing a 2-3 Tree as a BST: Dealing with 3-Nodes

Possibility 2: Create “glue” links with the smaller item off to the left.

m m
/’_/\ //"—)/\
Cdf] 0 — < e
< | ! A 1 /,\/\

b e g n P rd g

b e

1" "= ’ |
[df] o Bd)
' : — > LS
\ r 1 7
~4-== /
\\ d !
\]

For convenience, we’ll mark glue links as “red”. ~=-
oL

Left-Leaning Red Black Binary Search Tree (LLRB)

A BST with left glue links that represents a 2-3 tree is often called a “Left Leaning
Red Black Binary Search Tree” or LLRB.

e LLRBs are normal BSTs!
e Thereis a 1-1 correspondence between an LLRB and an equivalent 2-3 tree.
e Theredis just a convenient fiction. Red links don't “do” anything special.

horizontal red links

_ . . black links connect
red links "glue
T 2-nodes and 3-nodes
nodes within a 3-node

corresponding red-black BST

Left Leaning Red-Black Trees (LLRBS)

* LLRB Properties

LLRB Properties

Lecture 18, CS61B, Spring 2024

Left-Leaning Red Black Binary Search Tree (LLRB)

Draw the LLRB corresponding to the 2-3 tree shown below.

uw

AN

Left-Leaning Red Black Binary Search Tree (LLRB)

Draw the LLRB corresponding to the 2-3 tree shown below.

uw

Left-Leaning Red Black Binary Search Tree (LLRB)

Draw the LLRB corresponding to the 2-3 tree shown below.

AN

as \'

Searching an LLRB tree for a key is easy.

e Treat it exactly like any BST.

u y
N4
S \/ X

e

a

LLRB Problem #1: yellkey.com/view

How many of these are valid LLRBs, i.e. have a 1-1 correspondence with
a valid 2-3 tree?

G G G
C X B X B X B
: N N O
A C A C A

LLRB Problem #1: yellkey.com/view

How many of these are valid LLRBs, i.e. have a 1-1 correspondence with
a valid 2-3 tree?

G G G G
N PN N PN
C X B X B X B X
= 7\ 7\ 7\
A C A C A C
A
CEquivalent2-3
G G
oW PaW
G A B X B X BG
. N\ "\
ABC X C A C A C X

moee Invalid, has 4 node. Invalid, not balanced. Invalid, not balanced.

LLRB Problem #2: yellkey.com/chair

How tall is the corresponding LLRB for the 2-3 tree below? (3 - nodes in pink)

DE/'L\p
/\
B G J N S U
/N /\ /N A\
AIlCI|I|IFIIH | | K M| O QRIIT VW

LLRB Problem #2: yellkey.com/chair

How tall is the corresponding LLRB for the 2-3 tree below? (3 - nodes in pink)
e Each 3-node becomes two nodes in the LLRB.
e Total heightis 3 (black) + 2 (red) = 5.
e More generally, an LLRB has no more than ~2x the height of its 2-3 tree.

L
/
DE P
3 black links
B G J N S U 2 red links
AIIC||IFIIH|]IT|K M| O QR T||VW

Dark line shows longest path (3 links).

LLRB Balance

Because 2-3 trees have logarithmic height, and the corresponding LLRB has height
that is never more than ~2 times the 2-3 tree height, LLRBs also have logarithmic
height!

L
/
DE P
3 black links
B G J N SuU 2 red links
A|ICIIFI|IH||I|IK M| O QR I||T|| VW

Dark line shows longest path (3 links).

Extra: LLRB
Invariants

Lecture 18, CS61B, Spring 2024

A somewhat more formal look at
heights of LLRBs follows in the hidden
slides after this one.

e Thisis covered in the web videos,
but honestly, | don't think the
argument is necessary.

e These slides include two
invariants you might find
interesting.

LLRB Height

Suppose we have a 2-3 tree of height H.
e What is the maximum height of the corresponding LLRB?

LLRB Height

Suppose we have a 2-3 tree of height H.
e What is the maximum height of the corresponding LLRB?
o Total height is H (black) + H + 1 (red) = 2H + 1.

Worst case would be if these
L - were both 3 nodes.

55| e

B G J N S U
ANYANRYANVANE 4 N
Allc|[FI[H][1][k] [m][o] [aQR][T][vw

Left-Leaning Red Black Binary Search Tree (LLRB) Properties

Some handy LLRB properties:

e No node has two red links [otherwise it'd be analogous to a 4 node, which are
disallowed in 2-3 trees].
e Every path from root to null has same number of black links [because 2-3

trees have the same number of links to every leaf]. LLRBs are therefore
balanced.

_ . . black links connect
red links "glue
T 2-nodes and 3-nodes
nodes within a 3-node

ck tree

corresponding red-black BST

Extra Slide: Root-to-Leaf vs. Root-to-Null

A version of this lecture from many years ago had a subtle error in its definition of
“perfect black balance”. Specifically, it stated:

e The number of black links to any leaf must be the same.

In fact, the correct invariant is:
e The number of black links to any null link must be the same.

An example of a red-black tree which satisfies the erroneous invariant, but has no
corresponding 2-3 tree:

G BG
/\ A
B X A X
/ 2-3 tree missing child.

Invalid LLRB!

A

Left-Leaning Red Black Binary Search Tree (LLRB) Properties

Some handy LLRB properties:

e No node has two red links [otherwise it'd be analogous to a 4 node, which are
disallowed in 2-3 trees].

e Every path from root to null has same number of black links [because 2-3
trees have the same number of links to every leaf]. LLRBs are therefore

balanced.
G G G G
C X B X B X B X
5 O\ ZON 2\
A C A C A C
A Invalid, not Invalid, not Valid

| ' . black balanced.
I|d, B has two red links. black balanced

Left Leaning Red-Black Trees (LLRBS)

Maintaining

I SOoOMm et ry Wit h Maintaining Isometry with
. Rotations

Rotations

Lecture 18, CS61B, Spring 2024

LLRB Construction

One last important question: Where do LLRBs come from?
e Would not make sense to build a 2-3 tree, then convert. Even more complex.
e Instead, it turns out we implement an LLRB insert as follows:
o Insert as usual into a BST.
o Use zero or more rotations to maintain the 1-1 mapping.

e black links connect
red links "glue
T 2-nodes and 3-nodes
nodes within a 3-node

2-3 tree corresponding red-black BST

The 1-1 Mapping

There exists a 1-1 mapping between:

e 2-3Tree
e |LLRB

2-3 tree

)) red-black tree
horizontal red links

Implementation of an LLRB is based on maintaining this 1-1 correspondence.

e When performing LLRB operations, pretend like you're a 2-3 tree.
e Preservation of the correspondence will involve tree rotations.

Design Task #1: Insertion Color

Should we use a red or black link when inserting?

LLRB World

World 2-3

Design Task #1: Insertion Color

Should we use a red or black link when inserting?
e Usered! In 2-3 trees new values are ALWAYS added to a leaf node (at first).

S

World 2-3

Design Task #2: Insertion on the Right

Suppose we have leaf E, and insert S with a red link. What is the problem below,
and what do we do about it?

B add(S)
PN
A E
LLRBWord
B add(S) B
World 2-3 LA E A ES

Design Task #2: Insertion on the Right

Suppose we have leaf E, and insert S with a red link. What is the problem below,
and what do we do about it: Right links aren’t allowed. What rotation fixes this?

B add(S)
/ \
A E
Hint: This is the correct
representation of the
LLRBWorld 23tee.
= s - o taton opeaton
World 2-3 A E A E S

Design Task #2: Insertion on the Right

Suppose we have leaf E, and insert S with a red link. What is the problem below,
and what do we do about it: Right links aren’t allowed, so rotateLeft(E).

B add(S) rotateLeft(E)
/\
A E
LLRB World
B add(S) B
World 2-3 LA E A ES

New Rule: Representation of Temporary 4-Nodes

We will represent temporary 4-nodes as BST nodes with two red links.
e This state is only temporary (more soon), so temporary violation of “left

leaning” is OK.

Represents
/ temporary 4 nodes.
Temporarily violates

“no red right links”.

Temporarlly violates

/B\ add(Z). /\ «— ‘no4nodes”.

World2-3 | A ES ESZ

Design Task #3: Double Insertion on the Left

Suppose we have the LLRB below and insert E. We end up with the wrong
representation for our temporary 4 node. What should we do so that the temporary
4 node has 2 red children (one left, one right) as expected?

add(E)
 ————
LLRB World
B add(E) B
World 2-3 | A SZ A ESZ

Design Task #3: Double Insertion on the Left

Suppose we have the LLRB below and insert E. We end up with the wrong
representation for our temporary 4 node. What should we do so that the temporary

4 node has 2 red children (one left, one right) as expected?

add(E)
—_—
Hint: This is the correct
representation of the
R N OTId e Gk
B add(E) B What rotation operation
/\ 'y /\ gives us this tree?

World 2-3 | A SZ

Design Task #3: Double Insertion on the Left

Suppose we have the LLRB below and insert E. We end up with the wrong
representation for our temporary 4 node. What should we do?
e Rotate Z right.

add(E) rotateRight(Z)
—_ _—
LLRBWorld
B add(E) B
World 2-3 LA SZ A ESZ

Design Task #4: Splitting Temporary 4-Nodes

Suppose we have the LLRB below which includes a temporary 4 node. What
should we do next?
e Tryto figure this one out! It's a particularly interesting puzzle.

A C
Hint: Ask yourself “What Would
LLRB World 2-3 Tree Do?” WW23TD?
split(A/B/C) BG
/\ Al (c) (X
World 2-3 _ABC

Design Task #4: Splitting Temporary 4-Nodes

Suppose we have the LLRB below which includes a temporary 4 node. What
should we do next?
e Tryto figure this one out! It's a particularly interesting puzzle.

A C A C
Hint 2: This is the correct
LLRB World representation of the 2-3 tree.
BG How do we get this tree?
split(A/B/C)
/\ Hint 3: We don't need rotation.
World2-3 (AB C A C X

Design Task #4: Splitting Temporary 4-Nodes

Suppose we have the LLRB below which includes a temporary 4 node. What
should we do next?
e Flip the colors of all edges touching B.
o Note: This doesn’t change the BST structure/shape.

G G
flip(B)
B \X > B X BST, the magic was inside
of you all along.
A C A C
LLRBWorld
split(A/B/C) BG
/ \

World 2-3 (AB C A C] X

... and That'’s It!

Congratulations, you just invented the red-black BST.
e Wheninserting: Use a red link.
e If thereis aright leaning “3-node”, we have a Left Leaning Violation.

o Rotate left the appropriate node to fix.
e |f there are two consecutive left links, we have an Incorrect 4 Node Violation.
o Rotate right the appropriate node to fix.

e If there are any nodes with two red children, we have a Temporary 4 Node.
o Color flip the node to emulate the split operation.

One last detail: Cascading operations.

e Itis possible that a rotation or flip operation will cause an additional violation
that needs fixing.

Cascading Balance Example

Inserting Z gives us a temporary 4 node.
e Color flip yields an invalid tree. Why? What's next?

B
add(2) flip(S) < S
E Z
LLRBWotld
B add(2) B split(E/S/Z) B S
World 2-3 A ES A ESZ A E Z

Cascading Balance Example

Inserting Z gives us a temporary 4 node.
e Color flip yields an invalid tree. Why? What's next?
e We have aright leaning 3-node (B-S). We can fix with rotateLeft(b).

B
rotateLeft(B)
A S —
E Z
R oM e
BS
World 2-3 AJLE] L

Left Leaning Red-Black Trees (LLRBS)

Optional Exercise Optional Exercise

Lecture 18, CS61B, Spring 2024

Insertion of 7 through 1

To get an intuitive understanding of why all this works, try inserting the 7, 6, 5, 4, 3,
2, 1, into an initially empty LLRB.
e You should end up with a perfectly balanced BST!

To check your work, see this demo.
e Or seethis video walkthrough of solution.

4
2 6
<=

1/13)15])1|7

https://docs.google.com/presentation/d/1jgOgvx8tyu_LQ5Y21k4wYLffwp84putW8iD7_EerQmI/edit?usp=sharing
https://www.youtube.com/watch?v=JwZU-uaNEMg&list=PL8FaHk7qbOD6aKgTz2W-foDiTeBEaBoS3&index=7

Left Leaning Red-Black Trees (LLRBS)

Runtime and
Implementation

Lecture 18, CS61B, Spring 2024

* Runtime and Implementation

LLRB Runtime

The runtime analysis for LLRBs is simple if you trust the 2-3 tree runtime.
e LLRB tree has height O(log N).
e Contains is trivially O(log N).
e Insertis O(log N).
o O(log N) to add the new node.
o O(log N) rotation and color flip operations per insert.

We will not discuss LLRB delete.

e Not too terrible really, but it's just not interesting enough to cover. See optional
textbook if you're curious (though they gloss over it, too).

Search Tree
Summary

Lecture 18, CS61B, Spring 2024 Search Tree Summary

Search Trees

In the last 3 lectures, we talked about using search trees to implement sets/maps.
e Binary search trees are simple, but they are subject to imbalance.

e 2-3Trees (B Trees) are balanced, but painful to implement and relatively
slow.

e LLRBs insertion is simple to implement (but delete is hard).
o Works by maintaining mathematical bijection with a 2-3 trees.

e Java's TreeMap is a red-black tree (not left leaning).
o Maintains correspondence with 2-3-4 tree (is not a 1-1 correspondence).
o Allows glue links on either side (see Red-Black Tree).

o More complex implementation, but significantly (?) faster.

https://github.com/AdoptOpenJDK/openjdk-jdk11/blob/999dbd4192d0f819cb5224f26e9e7fa75ca6f289/src/java.base/share/classes/java/util/TreeMap.java
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree

... and Beyond

There are many other types of search trees out there.

e Other self balancing trees: AVL trees, splay trees, treaps, etc. There are at
least hundreds of different such trees.

And there are other efficient ways to implement sets and maps entirely.
e Other linked structures: Skip lists are linked lists with express lanes.

e Otherideas entirely: Hashing is the most common alternative. We'll discuss
this very important idea in our next lecture.

