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The Bad News

B-Trees for small L, e.g. 2-3 trees and 2-3-4 trees, are a real pain to implement, and 
suffer from performance problems. Issues include:
● Maintaining different node types.
● Interconversion of nodes between 2-nodes and 3-nodes.
● Walking up the tree to split nodes.

“Beautiful algorithms are, unfortunately, not always the most useful.” - Knuth

public void put(Key key, Value val) {
   Node x = root;
   while (x.getTheCorrectChildKey(key) != null) {
      x = x.getTheCorrectChildKey();
      if (x.is4Node()) { x.split(); }
   }
   if (x.is2Node()) { x.make3Node(key, val); }
   if (x.is3Node()) { x.make4Node(key, val); }
}

fantasy 2-3 code via Kevin Wayne

http://www.cs.princeton.edu/courses/archive/fall18/cos226/lectures/33BalancedSearchTrees.pdf
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BSTs

Suppose we have a BST with the numbers 1, 2, 3. Five possible BSTs.
● The specific BST you get is based on the insertion order.
● More generally, for N items, there are Catalan(N) different BSTs.
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Given any BST, it is possible to move to a different configuration using “rotation”.
● In general, can move from any configuration to any other in 2n - 6 rotations 

(see Rotation Distance, Triangulations, and Hyperbolic Geometry or Amy Liu).

https://en.wikipedia.org/wiki/Catalan_number
https://www.cs.cmu.edu/~sleator/papers/rotation-distance.pdf
https://medium.com/@liuamyj/its-triangles-all-the-way-down-part-1-17f932f4c438


Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Preserves search tree property. No change to semantics of tree.

G

C P

k rA

B j l

I’m going left!!



Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Preserves search tree property. No change to semantics of tree.

G

C P

k rA

B j l

I’m going left!!

I’ll be G’s new boss.



Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Preserves search tree property. No change to semantics of tree.

G
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j l

I went left of P.
I am G’s new boss.



Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Preserves search tree property. No change to semantics of tree.

G

C

P

k r

A

B

j l

I am G’s new boss.
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I went left of P.



Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Preserves search tree property. No change to semantics of tree.

G

C

P

k r

A

B

j l

I am G’s new boss.

I don’t make sense.

I went left of P.

Where should                        go?k

j l



Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Preserves search tree property. No change to semantics of tree.

G

C

P

k

r

A

B
j l

I am G’s new boss.
I went left of P.

Where should                        go: To the right of G.k

j l

I got transferred 
from P to G.



Tree Rotation Definition (All in One Slide)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Preserves search tree property. No change to semantics of tree.

G

C P

k rA

B j l

I’m going left!!
I went left.

I’ll be G’s new boss.

I am G’s new boss.

G

C

P

k rA

B j l

For this example rotateLeft(G) increased height of tree!



Tree Rotation Definition (Alternate Interpretation)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
● Can think of as temporarily merging G and P, then sending G down and left.
● Preserves search tree property. No change to semantics of tree.

G

C P

k rA

B j l

C

k rA

B j l

G P

C k

r
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B
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G

P

For this example rotateLeft(G) increased height of tree!



Your Turn

rotateRight(P): Let x be the left child of P. Make P the new right child of x.
● Can think of as temporarily merging G and P, then sending P down and right.

C k r

A

B

j l

G

P



rotateRight(P): Let x be the left child of P. Make P the new right child of x.
● Can think of as temporarily merging G and P, then sending P down and right.
● Note: k was G’s right child. Now it is P’s left child.

Your Turn

G

C

P

k r

A

B

j l

For this example rotateRight(P) decreased height of tree!

C k r

A

B

j l

G

P

C k r

A

B

j l

G P
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BSTs

Give a sequence of rotation operations that balances the tree on the left.
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BSTs

Give a sequence of rotation operations that balances the tree on the left.
● rotateRight(3)
● rotateLeft(1)
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There are other correct answers as well!



Rotation for Balance

Rotation:
● Can shorten (or lengthen) a tree.
● Preserves search tree property.

D

B

rotateRight(D)

rotateLeft(B)

>D

> B and < D< B

D

B

>D

> B and < D< B



Rotation for Balance

Rotation:
● Can shorten (or lengthen) a tree.
● Preserves search tree property.

D

B

rotateRight(D)

rotateLeft(B)

>D

> B and < D< B

D

B

>D

> B and < D< B

Can use rotation to balance a BST.
● Rotation allows balancing of a BST in O(N) moves.



Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation
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rotateLeft(9)
rotateLeft(6)
rotateLeft(1)
rotateRight(6)



Some Rotations are Undefined

4

1 rotateRight(1)
???

● Rotating a node right is undefined if that node has no left child.
○ We would need to promote that node's left child, but it doesn't exist.

● Rotating a node left is undefined if that node has no right child.
● We won't need to perform any undefined rotations in this lecture, so don't 

worry about them.



Rotation: An Alternate Approach to Balance

Rotation:
● Can shorten (or lengthen) a tree.
● Preserves search tree property.

D

B

rotateRight(D)

rotateLeft(B)

>D

> B and < D< B

D

B

>D

> B and < D< B

Paying O(n) to occasionally balance a tree is not ideal. In this lecture, we’ll 
see a better way to achieve balance through rotation. But first...
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Search Trees

There are many types of search trees:
● Binary search trees: Can balance using rotation, but we have no algorithm for 

doing so (yet).
● 2-3 trees: Balanced by construction, i.e. no rotations required. 

Let’s try something clever, but strange.

Our goal: Build a BST that is structurally identical to a 2-3 tree.
● Since 2-3 trees are balanced, so will our special BSTs.



Representing a 2-3 Tree as a BST

A 2-3 tree with only 2-nodes is trivial.
● BST is exactly the same!

What do we do about 3-nodes?
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Representing a 2-3 Tree as a BST: Dealing with 3-Nodes

Possibility 1: Create dummy “glue” nodes.

d f

b g

o

n p

m

e

o

n p

m

b ge

d f

d f
d f

Result is inelegant. Wasted link. Code will be ugly.



Representing a 2-3 Tree as a BST: Dealing with 3-Nodes

Possibility 2: Create “glue” links with the smaller item off to the left.

d f

b g

o

n p

m

e

o

n p

m

d

f

d f

Idea is commonly used in practice (e.g. java.util.TreeSet).

e

g

b

d

f

For convenience, we’ll mark glue links as “red”. 



Left-Leaning Red Black Binary Search Tree (LLRB)

A BST with left glue links that represents a 2-3 tree is often called a “Left Leaning 
Red Black Binary Search Tree” or LLRB.
● LLRBs are normal BSTs! 
● There is a 1-1 correspondence between an LLRB and an equivalent 2-3 tree.
● The red is just a convenient fiction. Red links don’t “do” anything special.
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Left-Leaning Red Black Binary Search Tree (LLRB)

Draw the LLRB corresponding to the 2-3 tree shown below.

x ya s v

u w



Left-Leaning Red Black Binary Search Tree (LLRB)

Draw the LLRB corresponding to the 2-3 tree shown below.

x ya s v
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Left-Leaning Red Black Binary Search Tree (LLRB)

Draw the LLRB corresponding to the 2-3 tree shown below.

s v

u

w

x

y

a

Searching an LLRB tree for a key is easy.
● Treat it exactly like any BST.

x ya s v

u w



LLRB Problem #1: yellkey.com/view

How many of these are valid LLRBs, i.e. have a 1-1 correspondence with                  
a valid 2-3 tree?

G

B X

A C
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A C

G
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A C
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A
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LLRB Problem #1: yellkey.com/view

How many of these are valid LLRBs, i.e. have a 1-1 correspondence with                  
a valid 2-3 tree?

G

C X

A

B

G

B X

A C

G

B X

A C

G

B X

A C

G

A B C X

G

A B X

C

G

B X

A C

B G

XA C

Equivalent 2-3

Invalid, has 4 node. Invalid, not balanced. Invalid, not balanced.



LLRB Problem #2: yellkey.com/chair

How tall is the corresponding LLRB for the 2-3 tree below? (3 - nodes in pink)

D E P

B G J N

Q R V WA C F H I K M O

S U

T

L



LLRB Problem #2: yellkey.com/chair

How tall is the corresponding LLRB for the 2-3 tree below? (3 - nodes in pink)
● Each 3-node becomes two nodes in the LLRB.
● Total height is 3 (black) + 2 (red) = 5.
● More generally, an LLRB has no more than ~2x the height of its 2-3 tree.

L

P

U

S

R

Q

D E P

B G J N

Q R V WA C F H I K M O

S U

T

L

Dark line shows longest path (3 links).

3 black links
2 red links



LLRB Balance

Because 2-3 trees have logarithmic height, and the corresponding LLRB has height 
that is never more than ~2 times the 2-3 tree height, LLRBs also have logarithmic 
height!

L

P

U

S

R

Q

D E P

B G J N

Q R V WA C F H I K M O

S U

T

L

Dark line shows longest path (3 links).

3 black links
2 red links



A somewhat more formal look at 
heights of LLRBs follows in the hidden 
slides after this one.

● This is covered in the web videos, 
but honestly, I don’t think the 
argument is necessary.

● These slides include two 
invariants you might find 
interesting.

Extra: LLRB 
Invariants
Lecture 18, CS61B, Spring 2024



LLRB Height

D E P

B G J N

Q R V WA C F H I K M O

S U

T

L

Suppose we have a 2-3 tree of height H.
● What is the maximum height of the corresponding LLRB?



LLRB Height

D E P

B G J N

Q R V WA C F H I K M O

S U

T

L

Suppose we have a 2-3 tree of height H.
● What is the maximum height of the corresponding LLRB?

○ Total height is H (black) + H + 1 (red) = 2H + 1.

Worst case would be if these 
were both 3 nodes.



Left-Leaning Red Black Binary Search Tree (LLRB) Properties

Some handy LLRB properties:
● No node has two red links [otherwise it’d be analogous to a 4 node, which are 

disallowed in 2-3 trees].
● Every path from root to null has same number of black links [because 2-3 

trees have the same number of links to every leaf]. LLRBs are therefore 
balanced.



Extra Slide: Root-to-Leaf vs. Root-to-Null

A version of this lecture from many years ago had a subtle error in its definition of 
“perfect black balance”. Specifically, it stated:
● The number of black links to any leaf must be the same.

In fact, the correct invariant is:
● The number of black links to any null link must be the same.

An example of a red-black tree which satisfies the erroneous invariant, but has no 
corresponding 2-3 tree:

G

B X

A Invalid LLRB!

B G

XA
2-3 tree missing child.



Left-Leaning Red Black Binary Search Tree (LLRB) Properties

Some handy LLRB properties:
● No node has two red links [otherwise it’d be analogous to a 4 node, which are 

disallowed in 2-3 trees].
● Every path from root to null has same number of black links [because 2-3 

trees have the same number of links to every leaf]. LLRBs are therefore 
balanced.

G

C X

A

B

G

B X

A C

G

B X

A C

G

B X

A C

Invalid, B has two red links.
Invalid, not 
black balanced.

Invalid, not 
black balanced. Valid
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LLRB Construction

One last important question: Where do LLRBs come from?
● Would not make sense to build a 2-3 tree, then convert. Even more complex.
● Instead, it turns out we implement an LLRB insert as follows:

○ Insert as usual into a BST.
○ Use zero or more rotations to maintain the 1-1 mapping.



The 1-1 Mapping

There exists a 1-1 mapping between:
● 2-3 Tree
● LLRB

Implementation of an LLRB is based on maintaining this 1-1 correspondence.
● When performing LLRB operations, pretend like you’re a 2-3 tree.
● Preservation of the correspondence will involve tree rotations.



Design Task #1: Insertion Color

Should we use a red or black link when inserting?

S
S

E

S

E

S E S

LLRB World

World 2-3

add(E)

add(E)

add(E)



Design Task #1: Insertion Color

Should we use a red or black link when inserting?
● Use red! In 2-3 trees new values are ALWAYS added to a leaf node (at first).

S
S

E

S

E

S E S

LLRB World

add(E)

add(E)

add(E)

World 2-3



Suppose we have leaf E, and insert S with a red link. What is the problem below, 
and what do we do about it?

Design Task #2: Insertion on the Right

B

A E

B

A E S

B

A E

B

A E

S

LLRB World

add(S)

add(S)

World 2-3



Suppose we have leaf E, and insert S with a red link. What is the problem below, 
and what do we do about it: Right links aren’t allowed. What rotation fixes this?

Design Task #2: Insertion on the Right

B

A E

B

A E S

B

A E

B

A E

S

LLRB World

add(S)

add(S)

World 2-3

B

A S

E
Hint: This is the correct 
representation of the 
2-3 tree.

What rotation operation 
gives us this tree?



Design Task #2: Insertion on the Right

Suppose we have leaf E, and insert S with a red link. What is the problem below, 
and what do we do about it: Right links aren’t allowed, so rotateLeft(E).

B

A E

B

A E S

B

A E

B

A E

S

B

A S

E

LLRB World

add(S) rotateLeft(E)

add(S)

World 2-3



New Rule: Representation of Temporary 4-Nodes

We will represent temporary 4-nodes as BST nodes with two red links.
● This state is only temporary (more soon), so temporary violation of “left 

leaning” is OK.

B

A E S

B

A E S Z

LLRB World

B

A S

E

B

A S

E Z

add(Z)

add(Z)

Represents 
temporary 4 nodes. 
Temporarily violates 
“no red right links”.

Temporarily violates 
“no 4 nodes”.

World 2-3



Design Task #3: Double Insertion on the Left

Suppose we have the LLRB below and insert E. We end up with the wrong 
representation for our temporary 4 node. What should we do so that the temporary 
4 node has 2 red children (one left, one right) as expected?

LLRB World

World 2-3

B

A S Z

B

A E S Z

B

A Z

S

B

A Z

S

E

add(E)

add(E)



Design Task #3: Double Insertion on the Left

Suppose we have the LLRB below and insert E. We end up with the wrong 
representation for our temporary 4 node. What should we do so that the temporary 
4 node has 2 red children (one left, one right) as expected?

LLRB World

World 2-3

B

A S Z

B

A E S Z

B

A Z

S

B

A Z

S

E

add(E)

add(E)

Hint: This is the correct 
representation of the 
2-3 tree.

What rotation operation 
gives us this tree?

B

A S

E Z



Design Task #3: Double Insertion on the Left

Suppose we have the LLRB below and insert E. We end up with the wrong 
representation for our temporary 4 node. What should we do?
● Rotate Z right.

LLRB World

World 2-3

B

A S Z

B

A E S Z

B

A Z

S

B

A Z

S

E

B

A S

E Z

rotateRight(Z)add(E)

add(E)



Design Task #4: Splitting Temporary 4-Nodes

Suppose we have the LLRB below which includes a temporary 4 node. What 
should we do next?
● Try to figure this one out! It’s a particularly interesting puzzle.

LLRB World

World 2-3

G

A B C X

split(A/B/C) B G

XA C

G

B X

A C
Hint: Ask yourself “What Would 
2-3 Tree Do?” WW23TD?



Design Task #4: Splitting Temporary 4-Nodes

Suppose we have the LLRB below which includes a temporary 4 node. What 
should we do next?
● Try to figure this one out! It’s a particularly interesting puzzle.

LLRB World

World 2-3

G

A B C X

split(A/B/C) B G

XA C

G

B X

A C

G

B X

A C
Hint 2: This is the correct 
representation of the 2-3 tree.

How do we get this tree?

Hint 3: We don't need rotation.



Design Task #4: Splitting Temporary 4-Nodes

Suppose we have the LLRB below which includes a temporary 4 node. What 
should we do next?
● Flip the colors of all edges touching B.

○ Note: This doesn’t change the BST structure/shape.

LLRB World

World 2-3

G

A B C X

split(A/B/C) B G

XA C

G

B X

A C

flip(B)
G

B X

A C

BST, the magic was inside 
of you all along.



… and That’s It!

Congratulations, you just invented the red-black BST.
● When inserting: Use a red link.
● If there is a right leaning “3-node”, we have a Left Leaning Violation.

○ Rotate left the appropriate node to fix.
● If there are two consecutive left links, we have an Incorrect 4 Node Violation.

○ Rotate right the appropriate node to fix.
● If there are any nodes with two red children, we have a Temporary 4 Node.

○ Color flip the node to emulate the split operation.

One last detail: Cascading operations.
● It is possible that a rotation or flip operation will cause an additional violation 

that needs fixing. 



Cascading Balance Example

Inserting Z gives us a temporary 4 node.
● Color flip yields an invalid tree. Why? What’s next?

B

A E S

B

A E S Z

B

A S

E

LLRB World

World 2-3

B

A S

E Z

B

A S

E Z

B S

A E Z

add(Z) flip(S)

add(Z) split(E/S/Z)



Cascading Balance Example

Inserting Z gives us a temporary 4 node.
● Color flip yields an invalid tree. Why? What’s next?
● We have a right leaning 3-node (B-S). We can fix with rotateLeft(b).

LLRB World

World 2-3

B

A S

E Z

B S

A E Z

B

A

S

E

Z
rotateLeft(B)
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Insertion of 7 through 1

To get an intuitive understanding of why all this works, try inserting the 7, 6, 5, 4, 3, 
2, 1, into an initially empty LLRB.
● You should end up with a perfectly balanced BST!

To check your work, see this demo.
● Or see this video walkthrough of solution.

2

1 3

6

5 7

4

https://docs.google.com/presentation/d/1jgOgvx8tyu_LQ5Y21k4wYLffwp84putW8iD7_EerQmI/edit?usp=sharing
https://www.youtube.com/watch?v=JwZU-uaNEMg&list=PL8FaHk7qbOD6aKgTz2W-foDiTeBEaBoS3&index=7
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LLRB Runtime

The runtime analysis for LLRBs is simple if you trust the 2-3 tree runtime.
● LLRB tree has height O(log N).
● Contains is trivially O(log N).
● Insert is O(log N).

○ O(log N) to add the new node.
○ O(log N) rotation and color flip operations per insert.

We will not discuss LLRB delete.
● Not too terrible really, but it’s just not interesting enough to cover. See optional 

textbook if you’re curious (though they gloss over it, too).
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Search Trees

In the last 3 lectures, we talked about using search trees to implement sets/maps.
● Binary search trees are simple, but they are subject to imbalance.
● 2-3 Trees (B Trees) are balanced, but painful to implement and relatively 

slow.
● LLRBs insertion is simple to implement (but delete is hard).

○ Works by maintaining mathematical bijection with a 2-3 trees.
● Java’s TreeMap is a red-black tree (not left leaning).

○ Maintains correspondence with 2-3-4 tree (is not a 1-1 correspondence).
○ Allows glue links on either side (see Red-Black Tree).
○ More complex implementation, but significantly (?) faster.

https://github.com/AdoptOpenJDK/openjdk-jdk11/blob/999dbd4192d0f819cb5224f26e9e7fa75ca6f289/src/java.base/share/classes/java/util/TreeMap.java
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree


… and Beyond

There are many other types of search trees out there.
● Other self balancing trees: AVL trees, splay trees, treaps, etc. There are at 

least hundreds of different such trees.

And there are other efficient ways to implement sets and maps entirely.
● Other linked structures: Skip lists are linked lists with express lanes.
● Other ideas entirely: Hashing is the most common alternative. We’ll discuss 

this very important idea in our next lecture.


