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The Bad News

B-Trees for small L, e.g. 2-3 trees and 2-3-4 trees, are a real pain to implement, and
suffer from performance problems. Issues include:

e Maintaining different node types.
e Interconversion of nodes between 2-nodes and 3-nodes.
e Walking up the tree to split nodes.

fantasy 2-3 code via Kevin Wayne

public void put(Key key, Value val) {

Node X = root;

while (x.getTheCorrectChildKey(key) != null) {
X = x.getTheCorrectChildKey();
if (x.is4Node()) { x.split(); }

}

if (x.is2Node()) { x.make3Node(key, val); }

if (x.is3Node()) { x.makedNode(key, val); }

}

“Beautiful algorithms are, unfortunately, not always the most useful.” - Knuth
oL



http://www.cs.princeton.edu/courses/archive/fall18/cos226/lectures/33BalancedSearchTrees.pdf
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BSTs

Suppose we have a BST with the numbers 1, 2, 3. Five possible BSTs.
e The specific BST you get is based on the insertion order.
e More generally, for N items, there are Catalan(N) different BSTs.

< < e e
2
2 3 /\\ 1 2
N\ / 1]]3 N\ /
3 2 2 1

Given any BST, it is possible to move to a different configuration using “rotation”.

e In general, can move from any configuration to any other in 2n - 6 rotations
(see Rotation Distance, Triangulations, and Hyperbolic Geometry or Amy Liu).
oL



https://en.wikipedia.org/wiki/Catalan_number
https://www.cs.cmu.edu/~sleator/papers/rotation-distance.pdf
https://medium.com/@liuamyj/its-triangles-all-the-way-down-part-1-17f932f4c438

Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
e Preserves search tree property. No change to semantics of tree.

I'm going left!!
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Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
e Preserves search tree property. No change to semantics of tree.

I'm going left!!
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G I'll be G’s new boss.
/\ V
P

C
e N
A Kk r
N

B

AN

{ S




Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
e Preserves search tree property. No change to semantics of tree.
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Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
e Preserves search tree property. No change to semantics of tree.

| am G's new boss.
| went left of P. P —
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Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
e Preserves search tree property. No change to semantics of tree.

| am G’s new boss.
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L | don't make sense. /\
G A | k r

AN

j |

/
C

-

A

N
B

Where should k go?

AN

J I




Tree Rotation Definition (Demo)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
e Preserves search tree property. No change to semantics of tree.

/

A

N
B

| am G’s new boss.

L

| went left of P. P
— \
G r
| got transferred
from P to G.

g\

k

AN

Where should

k go: To the right of G.
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Tree Rotation Definition (All in One Slide)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.
e Preserves search tree property. No change to semantics of tree.

| am G’s new boss.

N
I'm going left!! e P
] .
G I'll be G's new boss. G
/\ -
C P C
A Kk r A K r

B | | B | |

For this example rotateLeft(G) increased height of tree!



Tree Rotation Definition (Alternate Interpretation)

rotateLeft(G): Let x be the right child of G. Make G the new left child of x.

e Can think of as temporarily merging G and P, then sending G down and left.
e Preserves search tree property. No change to semantics of tree.

G GP P
i N e T~
A K r A K r C K
N N N N i N
B j | B j | A j |
e

For this example rotateLeft(G) increased height of tree!



Your Turn

rotateRight(P): Let x be the left child of P. Make P the new right child of x.
e Can think of as temporarily merging G and P, then sending P down and right.

P
e/\
/\
C Kk r
e O\
A j |
N
B




Your Turn

rotateRight(P): Let x be the left child of P. Make P the new right child of x.

e Can think of as temporarily merging G and P, then sending P down and right.
e Note: k was G’'s right child. Now it is P’s left child.

P GP G
A /\P
N N
C k r C k r C k r
e N i N e N
A j | A j | A j |
N N N
B B B

For this example rotateRight(P) decreased height of tree!



Tree Rotation

* Tree Balancing
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BSTs

Give a sequence of rotation operations that balances the tree on the left.

1
N\

3 N
oo




BSTs

Give a sequence of rotation operations that balances the tree on the left.
e rotateRight(3)
e rotatelLeft(1)

1
PN

3 : 2 SZN
£

There are other correct answers as well!
oL



Rotation for Balance

Rotation:

e Can shorten (or lengthen) a tree.
e Preserves search tree property.
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Rotation for Balance

Rotation:

e Can shorten (or lengthen) a tree.
e Preserves search tree property.

D

B

£ A

<B >Band <D

A

>D

rotateRight(D)

<

>

rotateLeft(B)

Can use rotation to balance a BST.

°

Rotation allows balancing of a BST in O(N) moves.
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation




Demo: Balancing with Tree Rotation

RrotateLeft(G)
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation

PN

6 13

rotateLeft(1)
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Demo: Balancing with Tree Rotation

8
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation
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Demo: Balancing with Tree Rotation

6

/ \ rotatelLeft(9)
1 8 rotatelLeft(6) 8

rotateLeft(1)
\ \ rotateRight(6) /\
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Some Rotations are Undefined

e Rotating a node right is undefined if that node has no left child.
o We would need to promote that node's left child, but it doesn't exist.
e Rotating a node left is undefined if that node has no right child.

e We won't need to perform any undefined rotations in this lecture, so don't
worry about them.

1 rotateRight(1)

N\ = 777




Rotation: An Alternate Approach to Balance

Rotation:

e Can shorten (or lengthen) a tree.
e Preserves search tree property.

B
D rotateRight(D) D
/ -
B
>D
< >D
rotateLeft(B)
<B >Band<D <B >Band <D

Paying O(n) to occasionally balance a tree is not ideal. In this lecture, we'll
see a better way to achieve balance through rotation. But first...



Left Leaning Red-Black Trees (LLRBS)
* The 2-3 Tree Isometry
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Search Trees

There are many types of search trees:

e Binary search trees: Can balance using rotation, but we have no algorithm for
doing so (yet).

e 2-3trees: Balanced by construction, i.e. no rotations required.
Let's try something clever, but strange.

Our goal: Build a BST that is structurally identical to a 2-3 tree.
e Since 2-3 trees are balanced, so will our special BSTs.



Representing a 2-3 Tree as a BST

A 2-3 tree with only 2-nodes is trivial.

BST is exactly the same!

/\
e 0
b g n P

m
/\
e o)
b g n P
What do we do about 3-nodes?
m
/\
df o)
/\
e n p

??7?7




Representing a 2-3 Tree as a BST: Dealing with 3-Nodes

Possibility 1: Create dummy “glue” nodes.

m
1,’—-}‘\/\
|\ df “ (0] —_—
=~ --=> AN
b e g n p

Result is inelegant. Wasted link. Code will be ugly.

/ .
/7 \
s \
-— - 7
I/ \\ / \\
i d f \ _> I \

| \
* ] \\ d f \|

-~ ——




Representing a 2-3 Tree as a BST: Dealing with 3-Nodes

Possibility 2: Create “glue” links with the smaller item off to the left.

m m
/’_/\ //"—)/\
Cdf] 0 — < e
< | ! A 1 /,\/\

b e g n P rd g

b e

1" "= ’ |
[df] o Bd)
' : — > LS
\ r 1 7
~4-== /
\\ d !
\ ]

For convenience, we’ll mark glue links as “red”. ~=-
oL




Left-Leaning Red Black Binary Search Tree (LLRB)

A BST with left glue links that represents a 2-3 tree is often called a “Left Leaning
Red Black Binary Search Tree” or LLRB.

e LLRBs are normal BSTs!
e Thereis a 1-1 correspondence between an LLRB and an equivalent 2-3 tree.
e Theredis just a convenient fiction. Red links don't “do” anything special.

horizontal red links

_ . . black links connect
red links "glue
T 2-nodes and 3-nodes
nodes within a 3-node

corresponding red-black BST




Left Leaning Red-Black Trees (LLRBS)

* LLRB Properties
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Left-Leaning Red Black Binary Search Tree (LLRB)

Draw the LLRB corresponding to the 2-3 tree shown below.

uw

AN




Left-Leaning Red Black Binary Search Tree (LLRB)

Draw the LLRB corresponding to the 2-3 tree shown below.

uw




Left-Leaning Red Black Binary Search Tree (LLRB)

Draw the LLRB corresponding to the 2-3 tree shown below.

AN

as \'

Searching an LLRB tree for a key is easy.

e Treat it exactly like any BST.

u y
N4
S \/ X

e

a




LLRB Problem #1: yellkey.com/view

How many of these are valid LLRBs, i.e. have a 1-1 correspondence with
a valid 2-3 tree?

G G G
C X B X B X B
: N N O
A C A C A




LLRB Problem #1: yellkey.com/view

How many of these are valid LLRBs, i.e. have a 1-1 correspondence with
a valid 2-3 tree?

G G G G
N PN N PN
C X B X B X B X
= 7\ 7\ 7\
A C A C A C
A
CEquivalent2-3
G G
oW PaW
G A B X B X BG
. N\ "\
ABC X C A C A C X

moee Invalid, has 4 node. Invalid, not balanced.  Invalid, not balanced.



LLRB Problem #2: yellkey.com/chair

How tall is the corresponding LLRB for the 2-3 tree below? (3 - nodes in pink)

DE/'L\p
/\
B G J N S U
/N /\ /N A\
AIlCI|I|IFIIH | | K M| O QRIIT VW




LLRB Problem #2: yellkey.com/chair

How tall is the corresponding LLRB for the 2-3 tree below? (3 - nodes in pink)
e Each 3-node becomes two nodes in the LLRB.
e Total heightis 3 (black) + 2 (red) = 5.
e More generally, an LLRB has no more than ~2x the height of its 2-3 tree.

L
/
DE P
3 black links
B G J N S U 2 red links
AIIC||IFIIH|]IT|K M| O QR T||VW

Dark line shows longest path (3 links).



LLRB Balance

Because 2-3 trees have logarithmic height, and the corresponding LLRB has height
that is never more than ~2 times the 2-3 tree height, LLRBs also have logarithmic
height!

L
/
DE P
3 black links
B G J N SuU 2 red links
A|ICIIFI|IH||I|IK M| O QR I||T|| VW

Dark line shows longest path (3 links).



Extra: LLRB
Invariants

Lecture 18, CS61B, Spring 2024

A somewhat more formal look at
heights of LLRBs follows in the hidden
slides after this one.

e Thisis covered in the web videos,
but honestly, | don't think the
argument is necessary.

e These slides include two
invariants you might find
interesting.



LLRB Height

Suppose we have a 2-3 tree of height H.
e What is the maximum height of the corresponding LLRB?




LLRB Height

Suppose we have a 2-3 tree of height H.
e What is the maximum height of the corresponding LLRB?
o Total height is H (black) + H + 1 (red) = 2H + 1.

Worst case would be if these
L - were both 3 nodes.

55| e

B G J N S U
ANYANRYANVANE 4 N
Allc|[FI[H][1][k] [m][o] [aQR][T][vw




Left-Leaning Red Black Binary Search Tree (LLRB) Properties

Some handy LLRB properties:

e No node has two red links [otherwise it'd be analogous to a 4 node, which are
disallowed in 2-3 trees].
e Every path from root to null has same number of black links [because 2-3

trees have the same number of links to every leaf]. LLRBs are therefore
balanced.

_ . . black links connect
red links "glue
T 2-nodes and 3-nodes
nodes within a 3-node

ck tree

corresponding red-black BST




Extra Slide: Root-to-Leaf vs. Root-to-Null

A version of this lecture from many years ago had a subtle error in its definition of
“perfect black balance”. Specifically, it stated:

e The number of black links to any leaf must be the same.

In fact, the correct invariant is:
e The number of black links to any null link must be the same.

An example of a red-black tree which satisfies the erroneous invariant, but has no
corresponding 2-3 tree:

G BG
/\ A
B X A X
/ 2-3 tree missing child.

Invalid LLRB!

A




Left-Leaning Red Black Binary Search Tree (LLRB) Properties

Some handy LLRB properties:

e No node has two red links [otherwise it'd be analogous to a 4 node, which are
disallowed in 2-3 trees].

e Every path from root to null has same number of black links [because 2-3
trees have the same number of links to every leaf]. LLRBs are therefore

balanced.
G G G G
C X B X B X B X
5 O\ ZON 2\
A C A C A C
A Invalid, not Invalid, not Valid

| ' . black balanced.
I|d, B has two red links. black balanced



Left Leaning Red-Black Trees (LLRBS)

Maintaining

I SOoOMm et ry Wit h  Maintaining Isometry with
. Rotations

Rotations
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LLRB Construction

One last important question: Where do LLRBs come from?
e Would not make sense to build a 2-3 tree, then convert. Even more complex.
e Instead, it turns out we implement an LLRB insert as follows:
o Insert as usual into a BST.
o Use zero or more rotations to maintain the 1-1 mapping.

e black links connect
red links "glue
T 2-nodes and 3-nodes
nodes within a 3-node

2-3 tree corresponding red-black BST



The 1-1 Mapping

There exists a 1-1 mapping between:

e 2-3Tree
e |LLRB

2-3 tree

) ) red-black tree
horizontal red links

Implementation of an LLRB is based on maintaining this 1-1 correspondence.

e When performing LLRB operations, pretend like you're a 2-3 tree.
e Preservation of the correspondence will involve tree rotations.



Design Task #1: Insertion Color

Should we use a red or black link when inserting?

LLRB World

World 2-3



Design Task #1: Insertion Color

Should we use a red or black link when inserting?
e Usered! In 2-3 trees new values are ALWAYS added to a leaf node (at first).

S

World 2-3



Design Task #2: Insertion on the Right

Suppose we have leaf E, and insert S with a red link. What is the problem below,
and what do we do about it?

B add(S)
PN
A E
LLRBWord
B add(S) B
World 2-3 LA E A ES




Design Task #2: Insertion on the Right

Suppose we have leaf E, and insert S with a red link. What is the problem below,
and what do we do about it: Right links aren’t allowed. What rotation fixes this?

B add(S)
/ \
A E
Hint: This is the correct
representation of the
LLRBWorld 23tee.
= s - o taton opeaton
World 2-3 A E A E S




Design Task #2: Insertion on the Right

Suppose we have leaf E, and insert S with a red link. What is the problem below,
and what do we do about it: Right links aren’t allowed, so rotateLeft(E).

B add(S) rotateLeft(E)
/\
A E
LLRB World
B add(S) B
World 2-3 LA E A ES




New Rule: Representation of Temporary 4-Nodes

We will represent temporary 4-nodes as BST nodes with two red links.
e This state is only temporary (more soon), so temporary violation of “left

leaning” is OK.

Represents
/ temporary 4 nodes.
Temporarily violates

“no red right links”.

Temporarlly violates

/B\ add(Z). /\ «—  ‘no4nodes”.

World2-3 | A ES ESZ




Design Task #3: Double Insertion on the Left

Suppose we have the LLRB below and insert E. We end up with the wrong
representation for our temporary 4 node. What should we do so that the temporary
4 node has 2 red children (one left, one right) as expected?

add(E)
 ————
LLRB World
B add(E) B
World 2-3 | A SZ A ESZ




Design Task #3: Double Insertion on the Left

Suppose we have the LLRB below and insert E. We end up with the wrong
representation for our temporary 4 node. What should we do so that the temporary

4 node has 2 red children (one left, one right) as expected?

add(E)
—_—
Hint: This is the correct
representation of the
R N OTId e Gk
B add(E) B What rotation operation
/\ 'y /\ gives us this tree?

World 2-3 | A SZ




Design Task #3: Double Insertion on the Left

Suppose we have the LLRB below and insert E. We end up with the wrong
representation for our temporary 4 node. What should we do?
e Rotate Z right.

add(E) rotateRight(Z)
—_ _—
LLRBWorld
B add(E) B
World 2-3 LA SZ A ESZ




Design Task #4: Splitting Temporary 4-Nodes

Suppose we have the LLRB below which includes a temporary 4 node. What
should we do next?
e Tryto figure this one out! It's a particularly interesting puzzle.

A C
Hint: Ask yourself “What Would
LLRB World 2-3 Tree Do?” WW23TD?
split(A/B/C) BG
/\ Al (c) (X
World 2-3 _ABC




Design Task #4: Splitting Temporary 4-Nodes

Suppose we have the LLRB below which includes a temporary 4 node. What
should we do next?
e Tryto figure this one out! It's a particularly interesting puzzle.

A C A C
Hint 2: This is the correct
LLRB World representation of the 2-3 tree.
BG How do we get this tree?
split(A/B/C)
/\ Hint 3: We don't need rotation.
World2-3 ( AB C A C X




Design Task #4: Splitting Temporary 4-Nodes

Suppose we have the LLRB below which includes a temporary 4 node. What
should we do next?
e Flip the colors of all edges touching B.
o Note: This doesn’t change the BST structure/shape.

G G
flip(B)
B \X > B X BST, the magic was inside
of you all along.
A C A C
LLRBWorld
split(A/B/C) BG
/ \

World 2-3 (AB C A C] X




... and That'’s It!

Congratulations, you just invented the red-black BST.
e Wheninserting: Use a red link.
e If thereis aright leaning “3-node”, we have a Left Leaning Violation.

o Rotate left the appropriate node to fix.
e |f there are two consecutive left links, we have an Incorrect 4 Node Violation.
o Rotate right the appropriate node to fix.

e If there are any nodes with two red children, we have a Temporary 4 Node.
o Color flip the node to emulate the split operation.

One last detail: Cascading operations.

e Itis possible that a rotation or flip operation will cause an additional violation
that needs fixing.



Cascading Balance Example

Inserting Z gives us a temporary 4 node.
e Color flip yields an invalid tree. Why? What's next?

B
add(2) flip(S) < S
E Z
LLRBWotld
B add(2) B split(E/S/Z) B S
World 2-3 A ES A ESZ A E Z




Cascading Balance Example

Inserting Z gives us a temporary 4 node.
e Color flip yields an invalid tree. Why? What's next?
e We have aright leaning 3-node (B-S). We can fix with rotateLeft(b).

B
rotateLeft(B)
A S —
E Z
R oM e
BS
World 2-3 AJLE] L




Left Leaning Red-Black Trees (LLRBS)

Optional Exercise  Optional Exercise
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Insertion of 7 through 1

To get an intuitive understanding of why all this works, try inserting the 7, 6, 5, 4, 3,
2, 1, into an initially empty LLRB.
e You should end up with a perfectly balanced BST!

To check your work, see this demo.
e Or seethis video walkthrough of solution.

4
2 6
<=

1/13)15])1|7



https://docs.google.com/presentation/d/1jgOgvx8tyu_LQ5Y21k4wYLffwp84putW8iD7_EerQmI/edit?usp=sharing
https://www.youtube.com/watch?v=JwZU-uaNEMg&list=PL8FaHk7qbOD6aKgTz2W-foDiTeBEaBoS3&index=7

Left Leaning Red-Black Trees (LLRBS)

Runtime and
Implementation
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LLRB Runtime

The runtime analysis for LLRBs is simple if you trust the 2-3 tree runtime.
e LLRB tree has height O(log N).
e Contains is trivially O(log N).
e Insertis O(log N).
o O(log N) to add the new node.
o O(log N) rotation and color flip operations per insert.

We will not discuss LLRB delete.

e Not too terrible really, but it's just not interesting enough to cover. See optional
textbook if you're curious (though they gloss over it, too).



Search Tree
Summary
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Search Trees

In the last 3 lectures, we talked about using search trees to implement sets/maps.
e Binary search trees are simple, but they are subject to imbalance.

e 2-3Trees (B Trees) are balanced, but painful to implement and relatively
slow.

e LLRBs insertion is simple to implement (but delete is hard).
o Works by maintaining mathematical bijection with a 2-3 trees.

e Java's TreeMap is a red-black tree (not left leaning).
o Maintains correspondence with 2-3-4 tree (is not a 1-1 correspondence).
o Allows glue links on either side (see Red-Black Tree).

o More complex implementation, but significantly (?) faster.


https://github.com/AdoptOpenJDK/openjdk-jdk11/blob/999dbd4192d0f819cb5224f26e9e7fa75ca6f289/src/java.base/share/classes/java/util/TreeMap.java
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree

... and Beyond

There are many other types of search trees out there.

e Other self balancing trees: AVL trees, splay trees, treaps, etc. There are at
least hundreds of different such trees.

And there are other efficient ways to implement sets and maps entirely.
e Other linked structures: Skip lists are linked lists with express lanes.

e Otherideas entirely: Hashing is the most common alternative. We'll discuss
this very important idea in our next lecture.



